1. About the data set

		·	•		
Site name (three letter code)		Narita Flux research site (NRT[)			
Period of registered data		from January 1, 2001 to December 31, 2001			
This document file	name	FxMt_NRT_2001_30m_03.pdf			
Corresponding of name	data file	FxMt_NRT_2001_30m_03.csv			
Revision information	n				
Date		Details of revision	Renewed file name		
			Siln_NRT_2001_01.pdf		
24 December 2004	First regis	tration	FxMt_NRT_2001_30m_01.pdf		
			FxMt_NRT_2001_30m_01.csv		
			Siln_NRT_2001_01.pdf		
1 August 2005	Data of P	AR and VPD were added.	FxMt_NRT_2001_30m_02.pdf		
			FxMt_NRT_2001_30m_02.csv		
	Modified e	eddy covariance flux (Fc, H, and LE) data were	Siln_NRT_2001_01.pdf		
5 February 2006		l. New quality control methods were applied.	FxMt_NRT_2001_30m_03.pdf		
	registered	. New quality control methods were applied.	FxMt_NRT_2001_30m_03.csv		
Contact person#1	[Flux] Sen	Senichi Hoshino (kachitainya@aaa.bbb.go.jp)			
Contact person#2	[General]	eneral] Yoshio Yoshida (yossan@hnd.S1.go.jp)			
Contact person#3					
Contact person#4					

2. Site description

• to DB user ·····See also the general information file.

Hour line (Time difference from UTC)	9 hours ahead of UTC (Japan Standard Time (JST))			
Vegetation Type	Japanese larch forest			
Dominant Species (Overstory)	Japanese larch (<i>Larix Kaempferi Sarg.</i>), Birch (<i>Betula ermanii</i> and <i>Betula platyphylla</i>), Japanese elm (<i>Ulmus japonica</i>),Spruce (<i>Picea jezoensis</i>)			
Dominant Species (Understory) Fern (Dryopteris crassirhizoma, Dryopteris austriaca) and Pacterminalis				
Canopy height	About 15m			
LAI	9.2 m ² m ⁻² (max)(Overstory: 5.6 m ² m ⁻² , Understory: 3.6 m ² m ⁻²)			
Other information				

3. Observation and calculation

© to Data provider.....A list of references is shown in the last page. Please fill-in the blanks as much as possible, or select the suitable option.

3-1. Flux observation system and data acquisition

Type of sonic anemometer	DA600-3TV (Probe TR-61C) (KAIJO)
Type of IRGA	Open-path CO ₂ /H ₂ O gas analyzer, LI-7500 (LI-COR) (H, LE) Closed-path CO ₂ /H ₂ O gas analyzer, LI-6262 (LI-COR) (F _C)
Sampling rate	10 Hz
Averaging time	30 min
Flux measurement height #1	22 m above the ground (from January 1, 2001 to May 28, 2001)
Flux measurement height #2	27 m above the ground (from May 28, 2001 to December, 2001)
Flux measurement height #3	
Zero-plane displacement	
Roughness length	
Calibration information	Open-path analyzers were calibrated approximately every two months with standard CO ₂ gases and a dew point generator (LI610, LI-COR). The gain of CO ₂ of the closed-path analyzers were checked once a day by flowing two standard CO ₂ gases of 320 ppmv and 420 ppmv that were automatically controlled using a CR23X (LI-COR).
Other information	

3-2. Flux calculation

		Note/References			
Flow attenuation *4-6	✓ Yes	Shimizu, T. et al., 1999. Boundary-Layer Meteorol., 64: 227–236.			
Coordinate rotation *1-3	✓ Planar fit				
Lag removal *2, 7, 8	✓ Constant	Digital delay for LI7500 and DA-600			
Lag removal	V Constant	Time lag between w and c for closed-path system			

3-3. Flux corrections

		Note/References
Car consible boot flux	✓ Cross wind correction *9, 10	
For sensible heat flux	✓ Water vapor correction *11	
	• [u*, H, LE]	
	✓ Moor (1986) * ¹⁵	
High frequency loss	(Correction for path length and sensor separation)	
	• [Fc]	
	✓ Experimental approach *²	
Low frequency loss *16	✓ Block average	
(Detrending)	✓ Block average	

WPL Correction*17-21	✓ For latent heat (LE) flux ✓ For CO₂ flux	
Others *22-24	✓ Temperature dependency for latent heat: L	
	✓ Temperature dependency for air density	
	✓ Pressure dependency for air density	

3-4. Quality control *25-26

		Note/References
Raw data test	✓ Spike test *27	
Raw data test	✓ Absolute limits	
Non steady state test	✓ YES	
Integral turbulence characteristics	✓ YES (u*)	
Correlation coefficient	✓ Not applied	
Wind direction	✓ YES	Data with wind blowing from the tower were excluded to remove the tower's influence on measurements.
Footprint test *28, 29	✓ Not applied	
Absolute thresholds	✓ YES	
Others	✓	

3-4. Storage term

		Note/References
		From CO ₂ profile data (26, 22, 16, 12, 6, 3,
		1 m)
Storage term	• [CO ₂]	When CO ₂ profile data were missing, CO ₂
		data at the flux measuring height was
		used.

2_5	Othor	· infor	mation
ა-ⴢ.	. Omer	HIHOH	паноп

© to Data provider If your flux data were evaluated by gradient method, please explain the observation method here.

	Note/References

4. Registered Data

Observation items	Symbol	Unit	Height(s) Depth(s)	Instruments	Level of data processing
Year	Year	#### (YYYY)	***	***	
Date	DOY	1 ~ 365(6)	***	****	
Time	TIME	#### (HHMM)	***	***	
(CO ₂ flux)	Fc	micromol• m ⁻² • s ⁻¹	27 m	Three-dimensional sonic anemometer-thermomet ers (DA-600-3TV (Probe TR-61C), KAIJO) and closed-path CO ₂ /H ₂ O analyzers (LI6262, LI-COR)	Quality-controlled
(CO ₂ storage in canopy air layer)	Sc	micromol· m ⁻² · s ⁻¹	Profile (26, 22, 16, 12, 6, 3, 1 m	Closed-path CO ₂ /H ₂ O analyzers (Ll6262, Ll-COR)	Quality-controlled
Net ecosystem carbon exchange	NEE	micromol· m ⁻² · s ⁻¹	-	CO ₂ flux + CO ₂ storage in canopy air layer	Quality-controlled
Sensible heat flux	н	W• m ⁻²	27 m	Three-dimensional sonic anemometer-thermomet ers (DA-600-3TV (Probe TR-61C), KAIJO, Japan) and open-path CO ₂ /H ₂ O analyzers (LI6262, LI-COR)	Quality-controlled
Latent heat flux	LE	W∙ m ⁻²	27 m	Three-dimensional sonic anemometer-thermomet ers (DA-600-3TV (Probe TR-61C), KAIJO, Japan) and open-path CO ₂ /H ₂ O analyzers (LI6262, LI-COR)	Quality-controlled
Friction velocity	USt	m∙ s ⁻¹	27 m	Three-dimensional sonic anemometer-thermomet ers (DA-600-3TV (Probe TR-61C), KAIJO)	Quality-controlled
Global solar radiation (incoming)	Rg	W∙ m ⁻²	40 m	Pyranometer (MS-601, Eko, Japan)	Correlated by comparing with standard reference sensor Quality-controlled
Global solar radiation (outgoing)	Rg_out	W∙ m ⁻²	40 m	Radiometer (MR40, Eko, Japan)	Correlated by comparing with standard reference sensor Quality-controlled

Net Radiation	Rn	W∙ m ⁻²	40 m	Radiometer (MR40, Eko, Japan)	Correlated by comparing with standard reference sensor Quality-controlled
Photosynthetic active photon flux density	PPFD	micromol• m ⁻² • s ⁻¹	40 m	Quantum sensor (LI-190S, LI-COR)	Correlated by comparing with standard reference sensor Quality-controlled
Transmitted PAR	TPAR	micromol• m ⁻² • s ⁻¹	1.5 m (two point-averag e)	Quantum sensor (LI-190S, LI-COR)	Correlated by comparing with standard reference sensor Quality-controlled
Reflected PAR	RPAR	micromol• m ⁻² • s ⁻¹	40 m	Quantum sensor (LI-190S, LI-COR)	Correlated by comparing with standard reference sensor Quality-controlled
Wind direction	WD	degrees	27 m	Sonic anemometer (MA-130A, Eko, Japan)	Quality-controlled
Wind speed	WS	m∙ s ⁻¹	27 m	Sonic anemometer (MA-130A, Eko, Japan)	Quality-controlled
Barometric pressure	Pa	kPa	40 m	Barometer (PTB100, Vaisala)	Quality-controlled
Air temperature	Та	degrees C	27 m	Platinum resistance thermometers and capacitive hygrometers (HMP45D, Vaisala)	Correlated by comparing with standard reference sensor Quality-controlled
Relative humidity	Rh	%	27 m	Platinum resistance thermometers and capacitive hygrometers (HMP45D)	Correlated by comparing with standard reference sensor Quality-controlled
Vapor pressure deficit	VPD	kPa	27 m	Platinum resistance thermometers and capacitive hygrometers (HMP45D)	Calculated from Ta and Rh Quality-controlled
Precipitation	PPT	mm	40 m	Tipping-bucket rainguage with heater (52 202, R. M. Young)	If data were missing, we gap-filled using data from the nearest meteorological station

Soil temperature	Ts	degrees C	0.05 m (three point-averag e)	Platinum resistance thermometer	Quality-controlled
Ground heat flux	G	W∙ m ⁻²	0.05 m (five point-averag e)	Heat flux plate (MF-81, Eko, Japan) and Platinum resistance thermometer	G was calculated by adding the heat storage change in the topsoil layer above the heat plates to conductive soil heat flux (MF-81). Quality-controlled
Soil water content	SWC	m ³ m ⁻³	0.05 m (three point-averag e)	TDR sensor (CS615, Campbell)	Correlated by comparing with soil sampling method Quality-controlled

		_		
ちょうしょう しょうしょう しょうしょう しょうしょ しょうしょ しょうしょ しょうしょ しょくしゅ しゅうしゅ しゅうしゅう しゅう	Nloto	∙f∩r	data	users
. ,	13()		uaia	112512

⊚ to Data provider ·······If you use some tags (flags/identifiers) to identify the levels of data processing, please explain the meanings of the tags.

The figure	The figure of "-99999" denotes missing or rejected data.				

6. Important events

© to Data provider ······Please list noteworthy events during the observation period. For example, relocation of the instruments, reasons for missing observation, dates of sowing and harvesting at agricultural site should be listed in the table by date.

Date	Events
May 28, 2001	Flux measuring height was changed from 22 to 27 m.
October 10, 2001	Direction of flux measuring boom was changed from 153 to 273 degrees.

References

Flux calculation

- *1 McMillen, R.T., 1988. Boundary-Layer Meteorology, 43: 231-245.
- *2 Aubinet M. et al., 2000. Advances in Ecological Research, 30: 113-175.
- *3 Wilczak, J.M., Oncley, S.P. and Stage, S.A., 2001. Boundary-Layer Meteorology, 99: 127-150.
- *4 Wyngaard, J. C. and Zhang, S. F., 1985. J. Atmos. Oceanic Tech., 2: 548-558.
- *5 Kaimal, J.C. et al., 1990. Boundary-Layer Meteorol., 53: 103-115.
- *6 Shimizu, T. et al., 1999. Boundary-Layer Meteorol., 64: 227–236.
- *7 Leuning, R. and Judd M.J., 1996. Global Change Biology, 2: 241-254.
- *8 Information from Li-Cor

Flux correction

- *9 Schotanus, P. et al., 1983. Boundary-Layer Meteorology, 26: 81-93.
- *10 Liu, H., Peters, G. and Foken, T., 2001. Boundary-Layer Meteorology, 100: 459-468.
- *11 Kaimal J.C. and Gaynor, J.E., 1991. Boundary-Layer Meteorology, 56: 401-410.
- *12 Watanabe et al., 2000. Boundary-Layer meteorol. 96, 743-491.
- *13 Massman, W. J., 2000. Agric. For. Meteorol. 104, 185-198
- *14 Massman, W. J., 2001. Agric. For. Meteorol. 107, 247-251
- *15 Moore, C.J., 1986. Boundary-Layer Meteorology, 37: 17-35.
- *16 Moncrieff, J. et al., 2004. Averaging, detrending and filtering of eddy covariance time series. In: X. Lee (Editor), Handbook of Micrometeorology: A guide for surface Flux Measurements. Kluwer, Dirdrecht, pp. 7-31.
- *17 Webb, E. K., Pearman, G.I. and Leuning, R., 1980. Quarterly Journal of the Royal Meteorological Society, 106: 85-100.
- *18 Fuehrer, P.L. and Friehe, C.A., 2002. Boundary-Layer Meteorology, 102: 415-457.
- *19 Liebethal, C. and Foken, T., 2003. Boundary-Layer Meteorology, 109: 99-106.
- *20 Leuning, R. 2004. Measurements of trace gas fluxes in the atmosphere using eddy covariance: WPL corrections revisited. In: X. Lee (Editor), Handbook of Micrometeorology: A guide for surface Flux Measurements. Kluwer, Dirdrecht, pp. 119-132.
- *21 Massman, W. 2004. Concerning the measurement of atmospheric tarce gas fluxes with open- and closed-path eddy covariance system: The WPL terms and spectral attenuation. In: X. Lee (Editor), Handbook of Micrometeorology: A guide for surface Flux Measurements. Kluwer, Dirdrecht, pp. 133-160.
- *22 Fischer, G (Editor), 1988. Landolt-Börnstein, Numerical data and functional relationships in science and technology, Group V: Geophysics and space research, Volume 4: Meteorology Subvolume b: Physical and chemical properties of the air. Springer, Berlin, Heidelberg, 570pp.
- *23 Stull, R.B., 1988. An Introduction to Boundary Layer meteorology. Kluwer Acad. Publ., Dordrecht, Boston, London, 666pp.
- *24 Cohen, E. R. and Taylor, B. N., 1986. The 1986 adjustment of the fundamental physical constants. Internatinal Counsil of Scientific Unions (ICSU), Committee on Data for Science and Technology (CODATA). CODATA-Bulletin, No. 63: 36pp.

Quality control

- *25 Vickers, D. and Mahrt, L., 1997. Journal of Atmospheric and Oceanic Technology, 14: 512-526.
- *26 Foken, T. and Wichura, B., 1996. Agricultural and Forest Meteorology, 78: 83-105.
- *27 Hojstrup, J., 1993. Measuring Science Technology, 4: 153-157.
- *28 Schmid, H. P., 1994. Boundary-Layer Meteorology, 67: 293-318.
- *29 Korman, R. and Meixner, F.X., 1990. . Boundary-Layer Meteorology, 99: 207-224.